如右图,在平面直角坐标系中,已知“葫芦”曲线由圆弧与圆弧相接而成,两相接点均在直线上.圆弧所在圆的圆心是坐标原点,半径为;圆弧过点.(I)求圆弧的方程;(II)已知直线:与“葫芦”曲线交于两点.当时,求直线的方程.
(本小题满分14分)已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知过点的直线与椭圆交于,两点.(ⅰ)若直线垂直于轴,求的大小;(ⅱ)若直线与轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.
(本小题满分13分)已知函数,其中是常数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.
(本小题满分14分)在四棱锥中,底面是直角梯形,∥,,,平面平面.(Ⅰ)求证:平面; (Ⅱ)求平面和平面所成二面角(小于)的大小;(Ⅲ)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.
(本小题满分13分)为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求的分布列和数学期望.
(本小题满分13分)在中,角,,所对的边分别为,,, ,.(Ⅰ)求及的值;(Ⅱ)若,求的面积.