..(本题14分)已知为常数,且,函数,(,为自然对数的底数)(Ⅰ)求实数的值;(Ⅱ)求函数的单调区间;(Ⅲ)当时,是否同时存在实数和(<),使得对每一个,直线与曲线()都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.
已知函数,其图象在点处的切线方程为 (1)求的值; (2)求函数的单调区间,并求出在区间[-2,4]上的最大值.
已知函数, ,,、. (Ⅰ)若,判断的奇偶性; (Ⅱ) 若,是偶函数,求; (Ⅲ)是否存在、,使得是奇函数但不是偶函数?若存在,试确定与的关系式;如果不存在,请说明理由.
已知向量 (Ⅰ)求的最小正周期T; (Ⅱ)若,b,c分别为△ABC内角A,B,C的对边,A为锐角,上的最大值,求A,b和△ABC的面积.
在中,角、、所对应的边分别为、、,且满足. (I)求角的值; (Ⅱ)若,求的值.
分设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,是坐标原点,且,. (Ⅰ)若点Q的坐标是,求的值; (Ⅱ)若函数,求的值域.