(本小题满分12分)甲、乙二名射击运动员参加第二十六届世界大学生夏季运动会的预选赛,他们分别射击了4次,成绩如下表(单位:环):
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(2)现要从中选派一人参加决赛,你认为选派哪位运动员参加比较合适?请说明理由.
直四棱柱中,底面为菱形,且为延长线上的一点,面.设. (Ⅰ)求二面角的大小; (Ⅱ)在上是否存在一点,使面?若存在,求的值;不存在,说明理由.
某公司计划在迎春节联欢会中设一项抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球。活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖,奖金30元;三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金。 (1)求员工甲抽奖一次所得奖金ξ的分布列与期望; (2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
已知圆O的半径为R(R为常数),它的内接三角形ABC满足成立,其中分别为的对边,求三角形ABC面积S的最大值.
已知函数(其中,e是自然对数的底数). (Ⅰ)若,试判断函数在区间上的单调性; (Ⅱ)若函数有两个极值点,(),求k的取值范围; (Ⅲ)在(Ⅱ)的条件下,试证明.
已知点,,直线AG,BG相交于点G,且它们的斜率之积是. (Ⅰ)求点G的轨迹的方程; (Ⅱ)圆上有一个动点P,且P在x轴的上方,点,直线PA交(Ⅰ)中的轨迹于D,连接PB,CD.设直线PB,CD的斜率存在且分别为,,若,求实数的取值范围.