在平面直角坐标系中,如图,已知椭圆的左右顶点为A,B,右焦点为F,设过点T()的直线TA,TB与椭圆分别交于点M,,其中m>0, ①设动点P满足,求点P的轨迹 ②设,求点T的坐标 ③设,求证:直线MN必过x轴上的一定点(其坐标与m无关)
如图,,为椭圆:的左、右两个焦点,直线:与椭圆交于两点,,已知椭圆中心点关于的对称点恰好落在的左准线上. ⑴求准线的方程; ⑵已知,,成等差数列,求椭圆的方程.
如图,给出定点和直线,是直线上的动点,的角平分线交于点,求的轨迹方程,并讨论方程表示的曲线类型与值的关系.
已知梯形中,,点分有向线段所成的比为,双曲线过,,三点,且以,为焦点,当时,求双曲线离心率的取值范围.
已知双曲线的离心率,左、右焦点分别为,,左准线为,能否在双曲线的左支上找到一点,使得是到的距离与的等比中项?
求出过定点且与抛物线只有一个公共点的直线的方程.