高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数。(2)设表示该班两个学生的百米测试成绩,已知求事件“”的概率。
函数的最大值为3,其图像相邻两条对称轴之间的距离为. (1)求函数f(x)的解析式; (2)设,求的值.
已知数列中,前和 (1)求证:数列是等差数列 (2)求数列的通项公式 (3)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由。
已知函数. (1)若函数在上是增函数,求实数的取值范围; (2)若函数在上的最小值为3,求实数的值.
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数的图象,且点M到边OA距离为. (1)当时,求直路所在的直线方程; (2)当为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
在锐角△ABC中,角A、B、C的对边分别为a、b、c,且 (1)求角; (2)若,求面积S的最大值.