(本题12分)已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,左视图(或称侧视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.
已知函数f (x)=x 2+ax ,且对任意的实数x都有f (1+x)=f (1-x) 成立.(1)求实数 a的值;(2)利用单调性的定义证明函数f(x)在区间[1,+∞上是增函数.
已知 (1)若a=4,求 (2)若,求a的取值范围.
(本小题满分12分)已知x = 1是的一个极值点(I)求b的值;(II)求函数f(x)的单调减区间;(III)设,试问过点(2,5)可作多少条直线与曲线相切?请说明理由.
(本小题满分12分)请你设计一个包装盒,如下图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个正四棱挪状的包装盒E、F在AB上,是被切去的一等腰直角三角形斜边的两个端点.设AE= FB=x(cm).(I)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(II)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[
(本小题满分12分)巳知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.