如图,点为斜三棱柱的侧棱上一点,交于点,交于点.(1) 求证:;(2) 在任意中有余弦定理:.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明
(本小题满分12分)已知函数f(x)=2sinωx·cos(ωx+)+(ω>0)的最小正周期为4π.(1)求正实数ω的值;(2)在△ABC中,内角A、B、C的对边分别为a、b、c,且满足2bcosA=acosC+ccosA,求f(A)的值.
(本小题满分12分)若盒中装有同一型号的灯泡共12只,其中有9只合格品,3只次品.(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率;(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡前取出的次品灯泡只数X的分布列和数学期望.
选修4-5:不等式选讲已知, 求 的最大值和最小值.
选修4—4:坐标系与参数方程已知直线的极坐标方程为,圆M的参数方程为。(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M上的点到直线的距离的最小值.
选修4-1:几何证明选讲如图,已知是⊙的切线,为切点,是⊙的割线,与⊙交于 两点,圆心在的内部,点是的中点。(1)证明:四点共圆;(2)求的大小。