已知函数.(Ⅰ)当时,求函数的极大值;(Ⅱ)若函数存在单调递减区间,求实数的取值范围.
一个玩具盘由一个直径为米的半圆和一个矩形构成,米,如图所示.小球从点出发以的速度沿半圆轨道滚到某点处后,经弹射器以的速度沿与点切线垂直的方向弹射到落袋区内,落点记为.设弧度,小球从到所需时间为.(1)试将表示为的函数,并写出定义域;(2)求时间最短时的值.
如图,在三棱锥中,,,点,分别为, 的中点. (1)求证:直线平面; (2)求证:.
在中,角的对边分别为,向量.(1)若,求证:;(2)若,,求的值.
已知函数,设数列满足:,.(1)求证:,都有;(2)求证:
某商场举办“迎新年摸球”活动,主办方准备了甲、乙两个箱子,其中甲箱中有四个球,乙箱中有三个球(每个球的大小、形状完全相同),每一个箱子中只有一个红球,其余都是黑球. 若摸中甲箱中的红球,则可获奖金元,若摸中乙箱中的红球,则可获奖金元. 活动规定:①参与者每个箱子只能摸一次,一次摸一个球;②可选择先摸甲箱,也可先摸乙箱;③如果在第一个箱子中摸到红球,则可继续在第二个箱子中摸球,否则活动终止.(1)如果参与者先在乙箱中摸球,求其恰好获得奖金元的概率;(2)若要使得该参与者获奖金额的期望值较大,请你帮他设计摸箱子的顺序,并说明理由.