已知函数(Ⅰ)证明:若则 ;(Ⅱ)如果对于任意恒成立,求的最大值.
正四棱柱中,底面边长为,侧棱长为,为棱的中点,记以为棱,,为面的二面角大小为, (1)是否存在值,使直线平面, 若存在,求出值;若不存在,说明理由; (2)试比较与的大小。
已知:如图,矩形,平面,分别是的中点, (1)求证:直线直线, (2)若平面与平面所成的锐二面角为,能否确定使直线是异面直线与的公垂线.若能确定,求出的值;若不能确定,说明理由。
已知正三棱柱的每条棱长均为,为棱上的动点, (1)当在何处时,∥平面,并证明之; (2)在(1)下,求平面与平面所成锐二面角的正切值。
美国篮球职业联赛(),某赛季的总决赛在洛杉矶湖人队与费城76人队之间角逐,采用七局四胜制,即若有一队胜四场,由此队获胜且比赛结束,因两队实力水平非常接近,在每场比赛中两队获胜是等可能的,据以往资料统计,每场比赛组织者可获门票收入300万美元,两队决出胜负后问: (1)组织者在此次决赛中获门票收入为1200万美元的概率是多少? (2)组织者在此次决赛中获门票收入不低于1800万美元的概率是多少?
在三棱柱,已知是正方形且边长为,为矩形,且平面⊥平面 (1)求证:平面⊥平面; (2)求点到平面的距离。