(本小题满分14分)一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中,,,.(1)求证:;(2)求二面角的平面角的大小.
为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,如图所示茎叶图,根据茎叶图问:(1)甲、乙两个网站点击量的极差分别是多少?(2)甲网站点击量在间的频率是多少?(3)甲、乙两个网站哪个更受欢迎?并说明理由。
设计一个算法,求表达式的值,并画出程序框图。
某公园内有一椭圆形景观水池,经测量知,椭圆长轴长为20米,短轴长为16米,现以椭圆长轴所在直线为轴,短轴所在直线为轴,建立平面直角坐标系,如图所示:(1)为增加景观效果,拟在水池内选定两点安装水雾喷射口,要求椭圆上各点到这两点距离之和都相等,请指出水雾喷射口的位置(用坐标表示),并求椭圆的方程。(2)为了增加水池的观赏性,拟划出一个以椭圆的长轴顶点A、短轴顶点B及椭圆上某点M构成的三角形区域进行夜景灯光布置,请确定点M的位置,使此三角形区域面积最大。
已知函数,其中为正实数,2.7182……(1)当时,求在点处的切线方程。(2)是否存在非零实数,使恒成立。
已知定义在上的函数,最大值与最小值的差为4,相邻两个最低点之间距离为,函数图象所有对称中心都在图象的对称轴上.(1)求的表达式;(2)若,求的值;(3)设,,,若恒成立,求实数的取值范围.