(本小题满分12分)如图2,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.
已知:,:. (1)若,命题“且”为真,求实数的取值范围; (2)若是的必要不充分条件,求实数的取值范围.
已知椭圆的中心在原点,焦点在轴上,且过点和. (1)求椭圆的方程; (2)若椭圆与椭圆有相同的焦点,且过点,求椭圆的方程.
(本小题满分10分)已知椭圆方程为,设过定点M(0,2)的直线与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为原点),求直线斜率的取值范围.
(本小题满分12分)在平面直角坐标系中,直线与抛物线相交于不同的A、B两点. (Ⅰ)如果直线过抛物线的焦点,求·的值; (Ⅱ)如果·=-4,证明直线必过一定点,并求出该定点.
(本小题满分12分) 已知椭圆C:的长轴长为4. (Ⅰ)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆C的焦点坐标; (Ⅱ)若点P是椭圆C上的任意一点,过原点的直线与椭圆相交于M,N两点,记直线PM,PN的斜率分别为当时,求椭圆的方程.