已知椭圆的焦距为,且过点. (1)求椭圆的方程; (2)已知,是否存在使得点关于的对称点(不同于点)在椭圆上?若存在求出此时直线的方程,若不存在说明理由.
如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值.
我校社团联即将举行一届象棋比赛,规则如下:两名选手比赛时,每局胜者得分,负者得分,比赛进行到有一人比对方多分或打满局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率皆为,且各局比赛胜负互不影响. (Ⅰ)求比赛进行局结束,且乙比甲多得分的概率; (Ⅱ)设表示比赛停止时已比赛的局数,求随机变量的分布列和数学期望.
设△的三边为满足. (Ⅰ)求的值; (Ⅱ)求的取值范围.
已知△ABC的内角A、B、C所对的边分别为,且, cosB=. (1) 若b=4,求sinA的值; (2) 若△ABC的面积S△ABC=4,求b,c的值.
已知数列的前n项和为且,数列满足且. (1)求的通项公式; (2)求证:数列为等比数列; (3)求前n项和.