已知曲线的参数方程为为参数,),直线在参数方程是为参数),曲线与直线有一个公共点在轴上,以坐标原点为极点,轴的正半轴为极轴建立极坐标系。(1)求曲线的普通方程;(2)若点在曲线上,求的值。
在△ABC中,设角A,B,C的对边分别为a,b,c,且. (1)求角A的大小; (2)若,,求边c的大小.
设为随机变量,从棱长为1的正方体ABCD-A1B1C1D1的八个顶点中任取四个点,当四点共面时,=0,当四点不共面时,的值为四点组成的四面体的体积. (1)求概率P(=0); (2)求的分布列,并求其数学期望E ().
如图,在空间直角坐标系O-xyz中,正四棱锥P-ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且. (1)求证:MN⊥AD; (2)求MN与平面PAD所成角的正弦值.
已知x,y,z均为正数.求证:.
在极坐标系中,求点M关于直线的对称点N的极坐标,并求MN的长.