(本小题满分12分)已知椭圆的长轴长为4,离心率为,分别为其左右焦点.一动圆过点,且与直线相切.(Ⅰ)(ⅰ)求椭圆的方程; (ⅱ)求动圆圆心轨迹的方程;(Ⅱ) 在曲线上有两点,椭圆上有两点,满足与共线,与共线,且,求四边形面积的最小值.
设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+的值域,集合C为不等式 (x+4)≤0的解集.(1)求A∩B;(2)若C⊆∁RA,求a的取值范围.
已知函数f(x)=+a,g(x)=aln x-x(a≠0).(1)求函数f(x)的单调区间;(2)求证:当a>0时,对于任意x1,x2∈,总有g(x1)<f(x2)成立.
已知a>0,函数f(x)=ax2-ln x.(1)求f(x)的单调区间;(2)当a=时,证明:方程f(x)=f 在区间(2,+∞)上有唯一解.
已知函数f(x)=x3+ax2+bx(a,b∈R).(1)当a=1时,求函数f(x)的单调区间;(2)若f(1)=,且函数f(x)在上不存在极值点,求a的取值范围.
已知函数f(x)=cos+2sin2x,x∈R.(1)求函数f(x)的最小正周期及对称轴方程;(2)当x∈时,求函数f(x)的最大值和最小值及相应的x值.