(本小题满分14分)已知焦点在轴,顶点在原点的抛物线经过点,以抛物线上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点.(1)求抛物线的方程;(2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论;(3)当圆心在抛物线上运动时,记,,求的最大值.
如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ. (1)若a=1.5,问:观察者离墙多远时,视角θ最大? (2)若tanθ=,当a变化时,求x的取值范围.
已知 (1)若,求证: (2)设,若,求α,β的值.
如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为矩形,E,F分别为棱AB,PC的中点 (1)求证:PE⊥BC; (2)求证:EF∥平面PAD.
在△ABC中,角A,B,C所对的边分别为a,b,c,且acosB=bcosA. (1)求证:a=b (2)若sinA=,求sin(C)的值.
已知函数f(x)=alnx++1. (Ⅰ)当a=﹣时,求f(x)在区间[,e]上的最值; (Ⅱ)讨论函数f(x)的单调性; (Ⅲ)当﹣1<a<0时,有f(x)>1+ln(﹣a)恒成立,求a的取值范围.