某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.
已知,,设.(1)求函数的最小正周期及其单调递增区间; (2)若分别是锐角的内角的对边,且,,试求的面积.
已知其中是自然常数, (1)讨论时, 的单调性、极值; (2)求证:在(1)的条件下, (3)是否存在实数,使的最小值是3,如果存在,求出的值;如果不存在,说明理由.
如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P. (Ⅰ)建立适当的平面直角坐标系,求曲线C的方程; (Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F.若△OEF的面积不小于2,求直线l斜率的取值范围.
如图,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC中点,AO交BD于E. (1)求证:PA⊥BD; (2)求二面角P-DC-B的大小; (3)求证:平面PAD⊥平面PAB.
数列中,. (1)若的通项公式; (2)设的最小值.