在平面直角坐标系 x O y 中,已知点 A ( 0 , - 1 ) , B 点在直线 y = - 3 上, M 点满足 M B → / / O A → , M A → · A B → = M B → · B A → , M 点的轨迹为曲线 C .
(1)求 C 的方程; (2) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值.
已知 (1)求函数在上的最小值; (2)对一切恒成立,求实数的取值范围; (3)证明:对一切,都有成立.
已知椭圆经过点,离心率为,过点 的直线与椭圆交于不同的两点. (1)求椭圆的方程; (2)求的取值范围.
已知 (1)求证:向量与向量不可能平行; (2)若,且,求的值.
已知单调递增的等比数列满足:,且是的等差中项. (1)求数列的通项公式; (2)若,,求使成立的正整数的最小值.
在四棱锥中,,平面,为的中点,,. (1)求四棱锥的体积; (2)若为的中点,求证:平面平面.