(本小题满分13分)已知函数,其中为常数.(1)当时,若在区间上的最大值为,求的值;(2)当时,若函数存在零点,求实数的取值范围.
(本小题满分12分)设向量.(1)若向量,求的值;(2)设函数的最大值.
(本小题满分12分)设递增等差数列的前n项和为,已知,是和的等比中项.(l)求数列的通项公式;(2)求数列的前n项和
已知函数。 (Ⅰ)求函数的图像在处的切线方程;(Ⅱ)求的最大值;(Ⅲ)设实数,求函数在上的最小值
某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销。经试销发现:日销售量Q(件)与实际销售价x(元)满足关系: (1)求总利润(利润=销售额-成本)y(元)与销售价x(件)的函数关系式;(2)试问:当实际销售价为多少元时,总利润最大.
已知数列的前项和,数列的前项和。(Ⅰ)求数列和的通项公式;(Ⅱ)设,求数列的前项和表达式。