请认真阅读下列材料:“杨辉三角” (1261年)是中国古代重要的数学成就,它比西方的“帕斯卡三角”(1653年)早了300多年(如表1).在“杨辉三角”的基础上德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),称为莱布尼兹三角形(如表2) 请回答下列问题:(I)记为表1中第n行各个数字之和,求,并归纳出;(II)根据表2前5行的规律依次写出第6行的数.
如图,四边形为菱形,,平面,为中点.(Ⅰ)求证:平面平面;(Ⅱ)若,求三棱锥的体积.
已知数列是首项,公比的等比数列,设数列满足,数列满足.(Ⅰ)求证:数列为等差数列;(Ⅱ)求数列的前项和.
设函数.(Ⅰ)当时,解不等式;(Ⅱ)若的解集为,,求证:.
在直角坐标系中,已知圆的参数方程为为参数,以为极点,轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆的极坐标方程;(Ⅱ)已知直线,射线.射线与圆的交点为,与直线的交点为,求线段的长.
如图,为⊙外一点,交⊙于,,切⊙于为线段的中点,交⊙于,线段的延长线与⊙交于,连接.求证:(Ⅰ)∽;(Ⅱ).