已知双曲线,点在曲线上,曲线的离心率为,点、为曲线上易于点A的任意两点,为坐标原点。(1)求曲线上方程;(2)若为曲线的焦点,求最大值;(3)若以为直径的圆过点,求证:直线过定点,并求出定点坐标。
【2015高考湖北,理22】已知数列的各项均为正数,,为自然对数的底数. (Ⅰ)求函数的单调区间,并比较与的大小; (Ⅱ)计算,,,由此推测计算的公式,并给出证明; (Ⅲ)令,数列,的前项和分别记为,, 证明:.
【2015高考四川,理21】已知函数,其中. (1)设是的导函数,评论的单调性; (2)证明:存在,使得在区间内恒成立,且在内有唯一解.
【2015高考重庆,理20】 设函数 (1)若在处取得极值,确定的值,并求此时曲线在点处的切线方程; (2)若在上为减函数,求的取值范围。
【2015高考天津,理20(本小题满分14分)已知函数,其中. (Ⅰ)讨论的单调性; (Ⅱ)设曲线与轴正半轴的交点为P,曲线在点P处的切线方程为,求证:对于任意的正实数,都有; (Ⅲ)若关于的方程有两个正实根,求证:
【2015高考安徽,理21】设函数. (Ⅰ)讨论函数在内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记,求函数在上的最大值D; (Ⅲ)在(Ⅱ)中,取,求满足时的最大值.