两个完全相同的矩形按如图所示的方式摆放,使点均在轴的正半轴上,点B在第一象限,点在轴的正半轴上,点在函数的图象上(1)求的值.(2)将矩形绕点B顺时针旋转得到矩形边交函数的图象于点求的长.
有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的.(1)写出为负数的概率;(2)求一次函数的图象经过二、三、四象限的概率.(用树状图或列表法求解)
如图所示,正方形网格中,为格点三角形(即三角形的顶点都在格点上).(1)把沿方向平移后,点移到点,在网格中画出平移后得到的;(2)把绕点按逆时针方向旋转,在网格中画出旋转后的;(3)如果网格中小正方形的边长为1,求点经过(1)、(2)变换的路径总长.
解方程:.
如图所示,已知在直角梯形中,轴于点.动点从点出发,沿轴正方向以每秒1个单位长度的速度移动.过点作垂直于直线,垂足为.设点移动的时间为秒(),与直角梯形重叠部分的面积为.(1)求经过三点的抛物线解析式;(2)求与的函数关系式;(3)将绕着点顺时针旋转,是否存在,使得的顶点或在抛物线上?若存在,直接写出的值;若不存在,请说明理由.
如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60º. (1)求⊙O的直径; (2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为,连结EF,当为何值时,△BEF为直角三角形.