如图所示,正方形网格中,为格点三角形(即三角形的顶点都在格点上).(1)把沿方向平移后,点移到点,在网格中画出平移后得到的;(2)把绕点按逆时针方向旋转,在网格中画出旋转后的;(3)如果网格中小正方形的边长为1,求点经过(1)、(2)变换的路径总长.
如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.
某商场将进价为30元的书包以40元售出, 平均每月能售出600个,调查表明:这种书包的售价每上涨1元,其销售量就减少10个。(1)请写出每月售出书包的利润y元与每个书包涨价x元间的函数关系式;(2)设每月的利润为10000的利润是否为该月最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时书包的售价应定为多少元。(3)请分析售价在什么范围内商家所获利润不低于6000元。
如图,利用一面墙(长度不限),用24m长的篱笆,围成一个面积为70m2的长方形场地.求长方形的长和宽
如图,⊙O的半径OB=5 cm,AB是⊙O的弦,点C是AB延长线上一点,且∠OCA=30°,OC=8 cm,求AB的长.
如图,已知△ABC的三个顶点的坐标分别 为A(-6,0)、B(-2,3)、C(-1,0).(1)将△ABC绕坐标原点O逆时针旋转90°.画出对应的△A′B′C′图形;(2)若四边形A′B′C′D′为平行四边形,请直接写出第四个顶点D′的坐标.