如图,已知直角梯形所在的平面垂直于平面(1)的中点为,求证∥面(2)求平面与平面所成的锐二面角的余弦值
用总长14.8m的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积。
已知数列是递增数列,且满足。(1)若是等差数列,求数列的通项公式;(2)对于(1)中,令,求数列的前项和。
已知两点A。(1)求的对称轴和对称中心;(2)求的单调递增区间。
.(本小题满分14分) 已知圆M:及定点,点P是圆M上的动点,点Q在NP上,点G在MP上,且满足 (1)求点G的轨迹C的方程; (2)过点K(2,0)作直线与曲线C交于A、B两点,O是坐标原点,设是否存在这样的直线使四边形OASB的对角线相等?若存在,求出直线的方程;若不存在,说明理由.
.(本小题满分12分)已知函数是定义在实数集R上的奇函数,当>0时,(1)已知函数的解析式;(2)若函数在区间上是单调减函数,求a的取值范围;(3)试证明对.