已知公差不为零的等差数列中,,且成等比数列. (I)求数列的通项公式; (II)设,求数列的前项和.
已知函数()在时有极值,其图象在点处的切线与直线平行。 (1)求m,n的值; (2)求函数的单调区间。
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC="14," DC=6,求AD的长.
(本小题满分14分)设函数,的两个极值点为,线段的中点为. (1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心; (2) 如果点在第四象限,求实数的范围; (3) 证明:点也在函数的图象上,且为函数图象的对称中心.
(本小题满分14分) 如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且M在与之间运动. (1)当时,求椭圆的方程, (2)当的边长恰好是三个连续的自然数时, 求面积的最大值.