本小题满分13分)已知圆,定点A(2,0),M为圆C上一动点,点P在AM上,点N在C、M上(C为圆心),且满足,设点N的轨迹为曲线E.(1)求曲线E的方程;(2)过点B(m,0)作倾斜角为的直线交曲线E于C、D两点.若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m的取值范围.
选修4—4:坐标系与参数方程 已知直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程是. (1)写出直线的极坐标方程与曲线的普通方程; (2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.
选修4-1:几何证明选讲 如图所示,已知为圆的直径,,是圆上的两个点,于,交于,交于,. (1)求证:是劣弧的中点; (2)求证:.
设函数 (Ⅰ)若,是否存在k和m,使得 ,,若存在,求出k和m的值,若不存在,说明理由 (Ⅱ)设 有两个零点 ,且 成等差数列, 是 G (x)的导函数,求证:
已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,. (1)求抛物线的方程; (2)设点,()是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.
如图,在边长为的菱形中,,点,分别是边,的中点,,沿将△翻折到△,连接,得到如图的五棱锥,且. (1)求证:平面; (2)求二面角的正切值.