本小题满分13分)已知圆,定点A(2,0),M为圆C上一动点,点P在AM上,点N在C、M上(C为圆心),且满足,设点N的轨迹为曲线E.(1)求曲线E的方程;(2)过点B(m,0)作倾斜角为的直线交曲线E于C、D两点.若点Q(1,0)恰在以线段CD为直径的圆的内部,求实数m的取值范围.
如图,四棱锥中,平面,,点在线段上,且. (1)求证:平面 (2)若求四棱锥的体积.
定义为个正数的“均倒数”. 已知各项均为正数的数列的前项的“均倒数”为. (Ⅰ)求数列的通项公式; (Ⅱ)设,试求数列的前项和.
一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求: (1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.
已知锐角中内角、、所对边的边长分别为、、,满足,且. (Ⅰ)求角的值; (Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围.
已知函数,. (Ⅰ)若恒成立,求实数的值; (Ⅱ)设有两个极值点、(),求实数的取值范围,并证明.