已知函数(1)求函数的最小值和最小正周期;(2)设的内角A、B、C的对边分别为,且,若向量与向量共线,求的值。
如图,四棱锥中,,底面为直角梯形,,点在棱上,且.(1)求异面直线与所成的角;(2)求证:平面;(3)求二面角的余弦值.
已知曲线的方程是.(1)若曲线是椭圆,求的取值范围;(2)若曲线是双曲线,且有一条渐近线的倾斜角是,求此双曲线的方程.
在面积为12的中,已知,,试建立适当的坐标系,求出分别以为左、右焦点且过的双曲线方程.
已知大西北某荒漠上两点相距2千米,现准备在荒漠上围垦出一片以为一条对角线的平行四边形区域建农艺园.按照规划,围墙总长为8千米.(1)试求四边形另两个顶点的轨迹方程;(2)该荒漠上有一条直线型小溪刚好通过点,且与成角.现要对整条小溪进行改造,因考虑到小溪可能被农艺园围进的部分今后重新设计改造,因此对该部分暂不改造.问暂不改造的部分有多长?
已知条件和条件,现在要选择适当的实数的值,分别利用所给的两上条件作为构造命题:“若则”,并使得构造的原命题为真命题,而其逆命题为假命题,则这样的一个原命题可以是什么?并说明为什么这一命题是符合要求的命题.