(本小题满分10分)已知直线被抛物线C:截得的弦长.(1)求抛物线C的方程;(2) 若抛物线C的焦点为F,求三角形ABF的面积.
已知直线的极坐标方程为,圆C的方程为(1)化直线的方程为直角坐标方程(2)化圆的方程为普通方程。(3)求直线被圆截得的弦长。
(满分12分)(1)设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围;(2)设函数是定义在上的增函数,如果不等式对于任意恒成立,求实数的取值范围.
(满分12分)设数列前n项和为,且(1)求的通项公式;(2)若数列满足且(n≥1),求数列的通项公式.
(满分12分)已知是一个等差数列,且 (1)求的通项及前n项和; (2)若,求的前n项和.
(满分12分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房。经测算,如果将楼房建为x(x10)层,则每平方米的平均建筑费用为560+48x(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)