如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧). 已知点坐标为(,). (1)求此抛物线的解析式; (2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.
小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张. (1)请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果; (2)若规定:两次抽出的纸牌数字之和为奇数,则小昆出获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?
在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题: (1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1; (2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.
热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋高楼底部的俯角为,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:)
在ABCD中,E,F分别是BC、AD上的点,且BE=DF.求证:AE=CF.
先化简,再从、、三个数中,选择一个你认为合适的数作为的值代入求值.