(本小题满分14分)已知椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(Ⅰ)求椭圆的方程;(Ⅱ)已知动直线与椭圆相交于、两点.①若线段中点的横坐标为,求斜率的值;②已知点,求证:为定值.
已知函数在处的切线方程为. (1)求函数的解析式; (2)若关于的方程恰有两个不同的实根,求实数的值; (3)数列满足,,求的整数部分.
已知是定义在上的奇函数,当时,. (1)求; (2)求的解析式; (3)若,求区间.
对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”. (1) 判断函数是否为 “()型函数”,并说明理由; (2) 若函数是“()型函数”,求出满足条件的一组实数对; (3)已知函数是“型函数”,对应的实数对为,当时,,若当时,都有,试求的取值范围.
已知函数. (1)若在处取得极值,求的单调递增区间; (2)若在区间内有极大值和极小值,求实数的取值范围.
函数的定义域为,. (1)求集合; (2)若,求实数的取值范围.