已知箱子里装有3个白球、3个黑球,这些球除颜色外完全相同,每次游戏从箱子里取出2个球,若这两个球的颜色相同,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中获奖的概率;(Ⅱ)求在3次游戏中获奖次数的分布列及数学期望
已知四棱锥的三视图如下图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.是侧棱上的动点. (1)求证:; (2)若为的中点,求直线与平面所成角的正弦值; (3) 若四点在同一球面上,求该球的体积.
如图,在直三棱柱ABC—A1B1C1中, ,直线B1C与平面ABC成45°角. (1)求证:平面A1B1C⊥平面B1BCC1; (2)求二面角A—B1C—B的余弦值.
在空间直角坐标系中,已知O (0,0,0) ,A(2,-1,3),B(2,1,1). (1)求|AB|的长度; (2)写出A、B两点经此程序框图执行运算后的对应点A0,B0的坐标,并求出在方向上的投影.
在长方体中,,,、 分别为、的中点. (1)求证:平面; (2)求证:平面.
已知椭圆的方程为,双曲线的左、右焦点分别为的左、右顶点,而的左、右顶点分别是的左、右焦点。 (1)求双曲线的方程; (2)若直线与椭圆及双曲线都恒有两个不同的交点,且L与的两个焦点A和B满足(其中O为原点),求的取值范围。