已知箱子里装有3个白球、3个黑球,这些球除颜色外完全相同,每次游戏从箱子里取出2个球,若这两个球的颜色相同,则获奖.(每次游戏结束后将球放回原箱)(Ⅰ)求在1次游戏中获奖的概率;(Ⅱ)求在3次游戏中获奖次数的分布列及数学期望
某投资商准备在某市投资甲、乙、丙三个不同的项目,这三个项目投资是否成功相互独立,预测结果如表:
(1)求恰有一个项目投资成功的概率;(2)求至少有一个项目投资成功的概率
集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)+f(c)=0,那么映射f:M→N的个数是多少?
已知f满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,求f(72)的值.
已知二次函数f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;(2)若f(x)的最大值为正数,求实数a的取值范围.
在边长为4的正方形ABCD上有一点P,沿着折线BCDA由B点(起点)向A点(终点)移动,设P点移动的路程为x,△ABP的面积为y=f(x).(1)求△ABP的面积与P移动的路程间的函数关系式;(2)作出函数的图象,并根据图象求y的最大值.