甲、乙两人各掷一颗质地均匀的骰子,如果所得它们向上的点数之和为偶数,则甲赢,否则乙赢.(Ⅰ)求两个骰子向上点数之和为8的事件发生的概率;(Ⅱ)这种游戏规则公平吗?试说明理由
已知数列的前n项和为,且满足 (Ⅰ)求的值; (Ⅱ)求数列的通项公式; (Ⅲ)若,数列的前n项和为求满足不等式的最小n值.
如图,已知平面是正三角形,。(Ⅰ)若是的中点,求证平面; (Ⅱ)求证:平面平面; (Ⅲ)求直线与平面所成的角的正切值。
袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球 (Ⅰ)试问:一共有多少种不同的结果?请列出所有可能的结果; (Ⅱ)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
在中,内角对边的边长分别是.已知. (Ⅰ)若的面积等于,求; (Ⅱ)若,求的面积.
已知双曲线的离心率为e,右顶点为A,左、右焦点分别为、,点E为右准线上的动点,的最大值为. (1)若双曲线的左焦点为,一条渐近线的方程为,求双曲线的方程; (2)求(用表示); (3)如图,如果直线l与双曲线的交点为P、Q,与两条渐近线的交点为、,O为坐标原点,求证: