(本小题满分12分)某旅行社组织了一个有36名游客的旅游团到安徽风景名胜地旅游,其中是省外游客,其余是省内游客,在省外游客中有玩过黄山,在省内游客中有玩过黄山。(1)在该团中随机采访3名游客,求恰有1名 省外游客玩过黄山且省内游客玩过黄山少于2人的概率;(2)在该团的省内游客中随机采访3名游客,设其中省内游客玩过黄山的人数为随机变量,求的分布列及数学期望
(本小题满分12分) 已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE = x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图). (I)当x=2时,求证:BD⊥EG ; (II)若以F、B、C、D为顶点的三棱锥的体积记为, 求的最大值; (III)当取得最大值时,求二面角D-BF-C的余弦值.]
(本小题满分12分),是方程的两根, 数列是公差为正的等差数列,数列的前项和为,且. (I)求数列,的通项公式; (II)记=,求数列的前项和.
本小题满分12分) 已知关于x的二次函数f(x)=ax2-4bx+1. (I)已知集合P={-1,1,2,3,4,5},Q={-2,-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率; (II)在区域内随机任取一点(a,b).求函数y=f(x)在区间[1,+∞)上是增函数的概率.
(本小题满分10分) 已知向量,定义 (I)求函数的单调递减区间; (II)若函数为偶函数,求的值。
(本小题满分10分) 在某学校组织的一次蓝球定点投蓝训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次。某同学在A处的命中率为0.25,在B处的命中率为.该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为
求的值;求随机变量的数学期量;试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。