本小题满分12分)已知抛物线(I)求p与m的值;(II)若斜率为—2的直线l与抛物线G交于P、Q两点,点M为抛物线G上一点,其横坐标为1,记直线PM的斜率为k1,直线QM的斜率为k2,试问:是否为定值?请证明你的结论。
(本小题满分12分)如图,将边长为2的正六边形ABCDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且 (1)证明:平面ABEF平面BCDE; (2)求三棱锥的体积
(本小题满分12分)已知函数,且当时,的最小值为2, (1)求的值,并求的单调递增区间; (2)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
(本小题满分14分)已知焦点在轴上的椭圆的离心率为,分别为左右焦点,过点作直线交椭圆于(在两点之间)两点,且,关于原点的对称点为. (1)求椭圆的方程; (2)求直线的方程; (3)过任作一直线交过三点的圆于两点,求面积的取值范围.
(本小题满分13分)已知函数(其中是自然对数的底数),为导函数。 (1)当时,其曲线在点处的切线方程; (2)若时,都有解,求的取值范围; (3)若,试证明:对任意恒成立.
(本小题满分12分)数列的前n项和为,且 (1)求数列的通项公式; (2)若数列满足:,求数列的通项公式; (3)令,求数列的 n项和.