直线:与双曲线:相交于不同的、两点。(1)求AB的长度;下(2)是否存在实数,使得以线段为直径的圆经过坐标第原点?若存在,求出的值;若不存在,写出理由。
(本小题满分16分)已知椭圆:的左、右焦点分别为,下顶点为,点是椭圆上任一点,⊙是以为直径的圆. (Ⅰ)当⊙的面积为时,求所在直线的方程; (Ⅱ)当⊙与直线相切时,求⊙的方程; (Ⅲ)求证:⊙总与某个定圆相切.
(本小题满分16分) 某广告公司为2010年上海世博会设计了一种霓虹灯,样式如图中实线部分所示. 其上部分是以为直径的半圆,点为圆心,下部分是以为斜边的等腰直角三角形,是两根支杆,其中米,. 现在弧、线段与线段上装彩灯,在弧、弧、线段与线段上装节能灯. 若每种灯的“心悦效果”均与相应的线段或弧的长度成正比,且彩灯的比例系数为,节能灯的比例系数为,假定该霓虹灯整体的“心悦效果”是所有灯“心悦效果”的和. (Ⅰ)试将表示为的函数; (Ⅱ)试确定当取何值时,该霓虹灯整体的“心悦效果”最佳?
16.(本小题满分14分) 设的三个内角所对的边分别为,且满足. (Ⅰ)求角的大小; (Ⅱ)若,试求的最小值.
(本小题满分14分) 如图,在直四棱柱中,,分别是的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面.
C.(选修4—4:坐标系与参数方程) 若两条曲线的极坐标方程分别为与,它们相交于两点,求线段的长.