(本小题满分13分)已知m为实常数,设命题p:函数在其定义域内为减函数;命题是方程的两上实根,不等式对任意实数恒成立。(1)当p是真命题,求m的取值范围;(2)当“p或q”为真命题,“p且q”为假命题时,求m的取值范围。
设的内角、、的对边分别为、、,且满足.(1)求角的大小;(2)若,求面积的最大值.
已知函数().(1)若的定义域和值域均是,求实数的值;(2)若对任意的,,总有,求实数的取值范围.
已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为.(Ⅰ)求a,b的值;(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=+成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
已知函数f(x)=-alnx,a∈R.(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;(Ⅱ)对(Ⅰ)中的φ(a),(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;(ⅱ)当a>0,b>0时,证明:φ′()≤≤φ′().
如图,AB为圆O的直径,点E、F在圆O上,且AB∥EF,矩形ABCD所在的平面与圆O所在的平面互相垂直,已知AB=2,AD=EF=1.(Ⅰ)设FC的中点为M,求证:OM∥平面DAF;(Ⅱ)设平面CBF将几何体EF-ABCD分割成的两个锥体的体积分别为VF-ABCD、VF-CBE,求VF-ABCD:VF-CBE的值.