(本小题满分13分)已知m为实常数,设命题p:函数在其定义域内为减函数;命题是方程的两上实根,不等式对任意实数恒成立。(1)当p是真命题,求m的取值范围;(2)当“p或q”为真命题,“p且q”为假命题时,求m的取值范围。
已知圆A过点,且与圆B:关于直线对称. (1)求圆A的方程; (2)若HE、HF是圆A的两条切线,E、F是切点,求的最小值。 (3)过平面上一点向圆A和圆B各引一条切线,切点分别为C、D,设,求证:平面上存在一定点M使得Q到M的距离为定值,并求出该定值.
(本小题满分14分)如图,在四面体A−BCD中,AD^平面BCD,BC^CD,AD=2,BD=2.M是AD的中点. (1)证明:平面ABC平面ADC; (2)若ÐBDC=60°,求二面角C−BM−D的大小.
如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC的中点. (1)证明:PA//平面BGD; (2)求直线DG与平面PAC所成的角的正切值.
如图,直线过点P(2,1),夹在两已知直线和之间的线段AB恰被点P平分. (1)求直线的方程; (2)设点D(0,m),且AD//,求:ABD的面积.
已知函数 (Ⅰ)当时,求函数的极大值和极小值; (Ⅱ)当时,恒成立,求的取值范围.