(本小题满分12分)已知斜率为1的直线与双曲线相交于B、D两点,且BD的中点为M(1,3)。(1)求双曲线C的离心率;(2)若双曲线C的右焦点坐标为(3,0),则以双曲线的焦点为焦点,过直线上一点M作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程。
(本小题满分15分)如图,已知正方形和矩形所在的平面互相垂直,,为线段的中点。 (Ⅰ)求证:∥平面; (Ⅱ)求二面角的平面角的大小.
(本小题满分15分)已知数列的前n项和为Sn,且满足Sn+an=2. (Ⅰ)求数列的通项公式; (Ⅱ)求满足不等式的n的取值范围.
(本小题满分14分)在中,角、B、C所对的边分别是,. (Ⅰ)求角C; (Ⅱ)若的最短边长是,求最长边的长.
(本题10分)已知是定义在上的奇函数,时,. (1)求在上的表达式; (2)令,问是否存在大于零的实数、,使得当时,函数值域为,若存在求出、的值,若不存在请说明理由.
(本题8分)设二次,不等式的解集是. (1)求; (2)当函数的定义域是时,求函数的最大值.