如图,在直三棱柱中, AB=1,,.(Ⅰ)证明:;(Ⅱ)求二面角A——B的余弦值。
选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)若时,,求的取值范围.
已知曲线的参数方程为为参数,),直线在参数方程是为参数),曲线与直线有一个公共点在轴上,以坐标原点为极点,轴的正半轴为极轴建立极坐标系。(1)求曲线的普通方程;(2)若点在曲线上,求的值。
如图,是直角三角形,.以为直径的圆交于点,点是边的中点.连结交圆于点.(Ⅰ)求证:、、、四点共圆;(Ⅱ )求证:
设函数,.(1) 若曲线在点处的切线与直线垂直,求的单调递减区间和极小值(其中为自然对数的底数);(2)若对任意,恒成立,求的取值范围.
已知抛物线(1)若点是抛物线上一点,求证过点的抛物线的切线方程为:;(2)点是抛物线准线上一点,过点作抛物线的两条切线,切点分别为,求的最小值,并求相应的点的坐标.