(本小题满分16分)设数列的前n项和为,已知为常数,),eg (1)求p,q的值;(2)求数列的通项公式;(3)是否存在正整数m,n,使成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由。
已知关于的不等式的解集为.(1)求实数a,b的值;(2)解关于的不等式(c为常数).
已知(1)求函数的值域;(2)求函数的最大值和最小值.
如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪, 图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.(1)设(x≥0),,求用表示的函数关系式,并求函数的定义域;(2).如果是灌溉水管,为节约成本,希望它最短,的位置应在哪里?如果是参观线路,则希望它最长,的位置又应在哪里?请予证明.
已知函数(1)求函数的周期;(2)求函数的单调递增区间;(3)若时,的最小值为– 2 ,求a的值.
在分别是角A、B、C的对边,,且.(1)求角B的大小;(2)求sin A+sin C的取值范围.