(满分12分)已知函数(x∈R).(1)若有最大值2,求实数a的值;(2)求函数的单调递增区间.
已知函数 (I)求数列的通项公式; (II)若数列
某地区举行环保知识大赛,比赛分初赛和决赛两部分,初赛采用选用选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题直接进入决赛,答错3次者则被淘汰,已知选手甲连续两次 答错的概率为(已知甲回答每个问题的正确率相同,且相互之间没有影响) (I)求甲选手回答一个问题的正确率; (II)求选手甲进入决赛的概率; (III)设选手甲在初赛中的答题的个数为并求出的数学期望。
如图,DC⊥平面ABC,EB//DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE、AB的中点。 (I)证明:PQ//平面ACD; (II)求异面直线AE与BC所成角的余弦值; (III)求平面ACD与平面ABE所成锐二面角的大小。
若向量,在函数的图象中,对称中心到对称轴的最小距离为且当的最大值为1。 (I)求函数的解析式; (II)求函数的单调递增区间。
21.(本小题满分14分) 已知数列满足:. (Ⅰ)问数列是否为等差数列或等比数列?说明理由; (Ⅱ)求证:数列是等差数列,并求数列的通项公式; (Ⅲ)设,求数列的前项和.