如图,椭圆的离心率为,轴被曲线截得的线段长等于的长半轴长.(Ⅰ)求,的方程;(Ⅱ)设与轴的交点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.(i)证明:;(ii)记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?请说明理由.
已知命题:末位是0的整数,可以被5整除 .把命题改写为“若,则”的形式,并写出它的逆命题、否命题与逆否命题,并分别判断其真假 .
某食品厂定期购买面粉。已知该厂每天需用面粉6t,每t面粉的价格为1800元,面粉的保管等其他费用为平均每t每天3元,购买面粉每次需支付运费900元. 求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?
已知正数满足,求的最小值有如下解法:解:∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法.
已知直角△ABC中,周长为L,面积为S,求证:4S≤.
已知: 在中, ∠A,∠B,∠C, 的对边分别是a, b, c,则求满足下列条件的∠B的范围分别是什么。⑴若 a=2, b=1。 ⑵若 。