(本题满分12分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.(Ⅰ)求小球落入袋中的概率;(Ⅱ)在容器入口处依次放入4个小球,记为落入袋中小球的个数,试求的概率和的数学期望.
.(本小题满分16分)已知函数,并设,(1)若图像在处的切线方程为,求、的值;(2)若函数是上单调递减,则① 当时,试判断与的大小关系,并证明之;② 对满足题设条件的任意、,不等式恒成立,求的取值范围
(本小题满分16分)已知分别以和为公差的等差数列和满足, ,(1)若, ≥2917,且,求的取值范围;(2)若,且数列…的前项和满足,①求数列和的通项公式;②令,, >0且,探究不等式是否对一切正整数恒成立?
(本小题满分16分)某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据经验知道,该厂生产这种仪器,次品率与日产量(件)之间大体满足关系:(注:次品率,如表示每生产10件产品,约有1件为次品.其余为合格品.)已知每生产一件合格的仪器可以盈利元,但每生产一件次品将亏损元,故厂方希望定出合适的日产量,(1)试将生产这种仪器每天的盈利额(元)表示为日产量(件)的函数;(2)当日产量为多少时,可获得最大利润?
(本小题满分14分)已知点,点是⊙:上任意两个不同的点,且满足,设为弦的中点.(1)求点的轨迹的方程;(2)试探究在轨迹上是否存在这样的点:它到直线的距离恰好等于到点的距离?若存在,求出这样的点的坐标;若不存在,说明理由.
(本小题满分14分)如图a,在直角梯形中,,为的中点,在上,且。已知,沿线段把四边形折起如图b,使平面⊥平面。(1)求证:⊥平面;(2)求三棱锥体积.