(本题12分) 抛物线的顶点在原点,焦点在射线上(1)求抛物线的标准方程;(2)过(1)中抛物线的焦点F作动弦AB,过A、B两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出的值.
(本小题满分12分已知的内角、、的对边分别为、、,,且 (1)求角; (2)若向量与共线,求、的值.
(本小题满分12分) 已知,设= (1).求的最小正周期和单调递减区间; (2)设关于的方程=在有两个不相等的实数根,求的取值范围.
(10分) 测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高。
设且. (I)当时,求实数的取值范围; (II)当时,求的最小值.
已知函数f (x )=ax 3 + x2 + 2( a ≠ 0 ) . (Ⅰ) 试讨论函数f (x )的单调性; (Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.