已知函数f (x )=ax 3 + x2 + 2 ( a ≠ 0 ) .(Ⅰ) 试讨论函数f (x )的单调性;(Ⅱ) 若a>0,求函数f (x ) 在[1,2]上的最大值.
如图所示的几何体是由以正三角形为底面的直棱柱被平面所截而得. ,为的中点. (1)当时,求平面与平面的夹角的余弦值; (2)当为何值时,在棱上存在点,使平面?
(本小题满分12分) (1)求直线被双曲线截得的弦长; (2)求过定点的直线被双曲线截得的弦中点轨迹方程。
已知集合在平面直角坐标系中,点的横、纵坐标满足。 (1)请列出点的所有坐标; (2)求点不在轴上的概率; (3)求点正好落在区域上的概率。
设函数的定义域为集合,集合. 请你写出一个一元二次不等式,使它的解集为,并说明理由。
已知直线被两平行直线和所截得的线段长为9,且直线过点,求直线的方程.