(本题12分)已知函数(Ⅰ)求函数的对称中心和单调增区间;(8分)(Ⅱ)函数的图像可以由函数的图像以过怎样的变换得到?(4分)
圆柱形容器,其底面直径为2m,深度为1 m,盛满液体后以0.01m3/s的速率放出,求液面高度的变化率.
已知函数,求的单调区间。
(本小题12分) 如图,在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=CC1=2。
(1)证明:AB1⊥BC1;
(本小题12分)已知椭圆的一个顶点为(-2,0),焦点在x轴上,且离心率为.(1)求椭圆的标准方程.(2)斜率为1的直线与椭圆交于A、B两点,O为原点,当△AOB的面积最大时,求直线的方程.
(本小题12分)已知数列{an}中,a1 ="1" ,a2=3,且点(n,an)满足函数y =" kx" + b.(1)求k ,b的值,并写出数列{an}的通项公式;(2)记,求数列{bn}的前n和Sn .