设是平面上的两个向量,若向量与互相垂直.(Ⅰ)求实数的值;(Ⅱ)若,且,求的值.
如图,正三棱柱中,侧面是边长为2的正方形,是的中点,在棱上. (1)当时,求三棱锥的体积. (2)当点使得最小时,判断直线与是否垂直,并证明结论.
已知集合,,.从集合中各取一个元素分别记为,设方程为. (1)求方程表示焦点在轴上的双曲线的概率. (2)求方程不表示椭圆也不表示双曲线的概率.
已知是单调递增的等差数列,首项,前项和为,数列是等比数列,首项 (1)求和的通项公式. (2)设,数列的前项和为,求证:.
已知函数(其中,,)的最大值为2,最小正周期为. (1)求函数的解析式; (2)若函数图象上的两点的横坐标依次为,为坐标原点,求的值.
为了解《中华人民共国道路交通安全法》在学生中的普及情况,调查部门对某学校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10。 把这6名学生的得分看成一个总体。 (1)求该总体的平均数; (2)求该总体的的方差; (3)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,求该样本平均数于总体平均数之差的绝对值不超过0.5的概率。