设在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片,标号分别记为,设随机变量.(1)写出的可能取值,并求随机变量的最大值;(2)求事件“取得最大值”的概率;(3)求的分布列和数学期望与方差.
已知向量函数. (1)求函数的最小正周期及单调递减区间; (2)在锐角三角形ABC中,的对边分别是,且满足求的取值范围.
设数列的各项都是正数,且对任意,都有,其中为数列的前项和。 (1)求证数列是等差数列; (2)若数列的前项和为Tn,求Tn。
在中,边、、分别是角、、的对边,且满足. (1)求; (2)若,,求边,的值.
已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0. (1)求a的值; (2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;
已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c为常数. (1)试确定a,b的值; (2)讨论函数f(x)的单调区间; (3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.