(8分)已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.
如图, AB为⊙ O的直径, C, G是⊙ O上两点,过点 C的直线 CD⊥ BG于点 D,交 BA的延长线于点 E,连接 BC,交 OD于点 F,且 BC平分∠ ABD.
(1)求证: CD是⊙ O的切线;
(2)若 OF FD = 2 3 ,求∠ E的度数;
(3)连结 AD,在(2)的条件下,若 CD=2 3 ,求 AD的长.
如图,直线 y=﹣ x+2与反比例函数 y= k x ( k≠0)的图象交于 A( a,3), B(3, b)两点,过点 A作 AC⊥ x轴于点 C,过点 B作 BD⊥ x轴于点 D.
(1)求 a, b的值及反比例函数的解析式;
(2)若点 P在直线 y=﹣ x+2上,且 S △ ACP= S △ BDP,请求出此时点 P的坐标;
(3)在 x轴正半轴上是否存在点 M,使得△ MAB为等腰三角形?若存在,请直接写出 M点的坐标;若不存在,说明理由.
如图,在平行四边形 ABCD中, E, F分别是 AB, BC边上的中点, CE⊥ AB,垂足为 E, AF⊥ BC,垂足为 F, AF与 CE相交于点 G;
(1)求证:△ CFG≌△ AEG;
(2)若 AB=6,求四边形 AGCD的对角线 GD的长.
小美周末来到公园,发现在公园一角有一种"守株待兔"游戏.游戏设计者提供了一只兔子和一个有 A, B, C, D, E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从 A, B两个出入口放入:②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.
(1)请用画树状图的方法,列举出该游戏的所有可能情况;
(2)小美得到小兔玩具的机会有多大?
(3)假设有125人次玩此游戏,估计游戏设计者可赚多少元.
某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图1和图2,请根据相关信息,解答下列问题:
(1)该商场服装部营业员的人数为 ,图1中 m的值为 ;
(2)求统计的这组销售额数据的平均数、众数和中位数.