((本小题满分12分)设x,y∈R,,为直角坐标平面内x,y轴正方向上单位向量,若向量,,且.(1)求点M(x,y)的轨迹C的方程;(2)若直线L与曲线C交于A、B两点,若求证直线L与某个定圆E相切,并求出定圆E的方程。
(本小题满分12分)某工厂生产甲、乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:(Ⅰ)试分别估计芯片甲,芯片乙为合格品的概率;(Ⅱ)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的概率分布列和数学期望值.
(本小题满分12分)已知是公差为2的等差数列,且是与的等比中项.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.
(本小题满分10分)选修4—5:不等式选讲设函数.(Ⅰ)解不等式:>0;(Ⅱ)若对一切实数χ均成立,求m的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为χ轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t是参数).(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,直线l的参数方程化为普通方程;(Ⅱ)若直线l与曲线C相交于A、B两点,且|AB|=,试求实数m的值.
(本小题满分10分)选修4—1:几何证明选讲如图,AB是⊙O的直径,AC是⊙O的一条弦,∠BAC的平分线AD交⊙O于点D,DEAC,且DE交AC的延长线于点E,OE交AD于点F.(Ⅰ)求证:DE是⊙O的切线;(Ⅱ)若,求的值.