.若圆C过点M(0,1)且与直线相切,设圆心C的轨迹为曲线E,A、B为曲线E上的两点,点(I)求曲线E的方程; (II)若t=6,直线AB的斜率为,过A、B两点的圆N与抛物线在点A处共同的切线,求圆N的方程;(III)分别过A、B作曲线E的切线,两条切线交于点Q,若点Q恰好在直线上,求证:t与均为定值。
已知是二次函数,是它的导函数,且对任意的恒成立 (Ⅰ)求的解析式; (Ⅱ)设,曲线在点处的切线为与坐标轴围成的三角形面积为,求的最小值。
已知函数,求函数的单调区间和最值。
已知两定点F1(,0),F2(,0)满足条件的点P的轨迹方程是曲线C,直线与曲线C交于A、B两点,且. 1、求曲线C的方程; 2、若曲线C上存在一点D,使,求m的值及点D到直线AB的距离.
如图,在四棱锥P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是边长为2的正方形,△PAB是等边三角形. 1、求PC与平面ABCD所成角的正弦值; 2、求二面角B—AC—P的余弦值; 求点A到平面PCD的距离.
已知,以点C(t,)为圆心的圆与x轴交于O、A两点,与y轴交于O、B两点. 1、求证:S△AOB为定值; 2、设直线与圆C交于点M、N,若OM = ON,求圆C的方程.