.(本小题满分12分)已知函数的图象为曲线, 函数的图象为直线.(1) 当时, 求的最大值;(2) 设直线 与 曲线的交点的横坐标分别为 , 且 , 求证: .
已知椭圆(0<b<1)的左焦点为F,左、右顶点分别为A,C,上顶点为B,过F、B、C作⊙P,其中圆心P的坐标为(m,n)。 (1)当m+n>0时,求椭圆离心率的范围; (2)直线AB与⊙P能否相切?证明你的结论。
如图,正棱柱ABC-A1B1C1的所有棱长都为4,D为CC1中点, (1)求证:AB1⊥平面A1BD; (2)求二面角A-A1D-B的大小。
设数列{an}满足a1 = 3,an+1 = 2an+n·2n+1+3n,n≥1。 (1)求数列{an}的通项公式; (2)求数列{an}的前n项之和Sn。
如图,PA垂直于矩形ABCD所在的平面,PD=PA,E、F分别是AB、PD的中点。 (1)求证:AF∥平面PCE; (2)求证:平面PCE⊥平面PCD。